Synthetic Cevian Geometry

Igor Minevich
(Joint Work with Patrick Morton)

February 25, 2016

Outline

(1) Cool Points
(2) The Maps
(3) Projective Geometry
(4) Proof of Grinberg's Theorem
(5) Our Results

Part I

Almost 10,000 Interesting Points!

Incenter $I=X(1)$

- The center of the circle inscribed in the triangle
- The intersection of the angle bisectors

Centroid $G=X(2)$

- The intersection of the medians $A D_{0}, B E_{0}, C F_{0}$

Circumcenter $O=X(3)$

- The center of the circle through the vertices A, B, C
- The intersection of the perpendicular bisectors of the sides

Orthocenter $H=X(4)$

- The intersection of the altitudes

Nine-Point Center $N=X(5)$

- The midpoint of OH
- The center of the nine-point circle

The 9-point circle goes through:

- the feet of the altitudes
- the midpoints of the sides
- the midpoints of $\mathrm{AH}, \mathrm{BH}, \mathrm{CH}$

Gergonne Point $G e=X(7)$

If D, E, F are the places where the incircle touches the sides, then $G e$ is the intersection of $A D, B E, C F$

Nagel Point $\mathrm{Na}=\mathrm{X}(8)$

- If D, E, F are the places where the excircles touch the sides, then $N a$ is the intersection of $A D, B E, C F$.
- D, E, F are precisely the places you'll get to if you walk around the perimeter of the triangle halfway from each of the vertices.

Feuerbach Point $Z=X(11)$

Theorem (Feuerbach)

The nine-point circle is tangent to the incircle and the three excircles.

The point of tangency with the incircle is called the Feuerbach Point Z

Just For Fun: 1st Napoleon Center $X(17)$

Draw equilateral triangles $A^{*} B C, A B^{*} C, A B C^{*}$ outwards on the sides of the triangle, then connect the centers $A^{\prime}, B^{\prime}, C^{\prime}$ of the equilateral triangles to the opposite vertices of the triangle. $X(17)$ is the intersection of these lines.

Just For Fun: 2nd Napoleon Center $X(18)$

Draw equilateral triangles $A^{*} B C, A B^{*} C, A B C^{*}$ inwards on the sides of the triangle, then connect the centers $A^{\prime}, B^{\prime}, C^{\prime}$ of the equilateral triangles to the opposite vertices of the triangle. $X(18)$ is the intersection of these lines.

Just For Fun: Far-Out Point $X(23)$

Let $A^{\prime} B^{\prime} C^{\prime}$ be the triangle whose sides are tangent to the circumcircle of $A B C$. The circles through $A O A^{\prime}, B O B^{\prime}$, and $C O C^{\prime}$ all go through one point: $X(23)$.

Some Theorems from rojective Geometry

Čeva's Theorem: Why The Maps Are Well-Defined

Let D, E, F be points on the lines $B C, C A, A B$, respectively. Then $A D, B E, C F$ are concurrent (i.e. intersect in one point P) if and only if

$$
\frac{A F}{F B} \cdot \frac{B D}{D C} \cdot \frac{C E}{E A}=1
$$

Isotomic Conjugate Map ι : Definition

Let P be a point not on the sides of $A B C$. Let D, E, F be its traces:

$$
\begin{aligned}
& D=A P \cap B C \\
& E=B P \cap A C \\
& F=C P \cap A B
\end{aligned}
$$

Let $D^{\prime}, E^{\prime}, F^{\prime}$ be the reflections of D, E, F across the midpoints of the sides. Then $A D^{\prime}, B E^{\prime}, C F^{\prime}$ are concurrent at the point $P^{\prime}=\iota(P)$, the isotomic conjugate of P, and $P=\iota\left(P^{\prime}\right)$.

Isotomic Conjugate Map ι : Examples

The centroid G is a fixed point:

$$
\iota(G)=G .
$$

$$
\iota(G e)=N a .
$$

Isogonal Conjugate Map γ : Definition

Let P be a point not on the sides of $A B C$. Reflect the lines $A P, B P, C P$ across the angle bisectors (dashed red lines). The three resulting lines are concurrent at the point $P^{\prime}=\gamma(P)$, the isogonal conjugate of P, and $\gamma\left(P^{\prime}\right)=P$.

B

Isogonal Conjugate Map γ : Examples

The incenter I is a fixed point:

$$
\gamma(I)=I
$$

$$
\gamma(O)=H .
$$

Cyclocevian Conjugate Map ϕ : Definition

Let D, E, F be the traces of P :

$$
\begin{aligned}
& D=A P \cap B C \\
& E=B P \cap A C \\
& F=C P \cap A B
\end{aligned}
$$

Let $D^{\prime}, E^{\prime}, F^{\prime}$ be the other intersections of the circle through D, E, F with the sides of the triangle. Then $A D^{\prime}, B E^{\prime}, C F^{\prime}$ are concurrent at the point $P^{\prime}=\phi(P)$, the cyclocevian conjugate of P, and $P=\phi\left(P^{\prime}\right)$.

Cyclocevian Conjugate Map ϕ : Examples

$$
\phi(H)=G .
$$

The Gergonne Point is a fixed point: $\phi(G e)=G e$.

Complement Map K: Definition

$$
\begin{aligned}
& K(P)=P^{\prime} \text { where } P G=-2 G P^{\prime} . \text { In this case, } K^{-1}\left(P^{\prime}\right)=P . \\
& K(G)=G ; K(A)=D_{0} .
\end{aligned}
$$

Complement Map K: Examples

$$
K(N a)=I .
$$

$$
K(H)=O \text { and } K(O)=N .
$$

The Theorem

Theorem (D. Grinberg, 2003)

$$
\phi=\iota \circ K^{-1} \circ \gamma \circ K \circ \iota
$$

Some Theorems from rojective Geometry

Harmonic Conjugates

Let A, B, C lie on one line I. The harmonic conjugate of C with respect to A and B is the point D on I such that the cross ratio equals -1 :

$$
\frac{A C / C B}{A D / D B}=-1
$$

Take any triangle $P Q R$ such that A is on $Q R, B$ is on $P R$, and C is on $P Q$. Construct $S=A P \cap B Q$. Then $D=R S \cap I$.

Desargues' Theorem

Let $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$ be two triangles. Then $A A^{\prime}, B B^{\prime}, C C^{\prime}$ are concurrent if and only if

$$
L=B C \cap B^{\prime} C^{\prime}, M=A C \cap A^{\prime} C^{\prime}, \text { and } N=A B \cap A^{\prime} B^{\prime}
$$ are collinear.

Pappus's Theorem

Let A, B, C be collinear and $A^{\prime}, B^{\prime}, C^{\prime}$ be collinear. Then the cross-joins

$$
L=B C^{\prime} \cap B^{\prime} C, M=A C^{\prime} \cap A^{\prime} C, \text { and } N=A B^{\prime} \cap A^{\prime} B
$$ are collinear.

Pascal's "Mystical Hexagram" Theorem

Let A, B, C, D, E, F be points on a conic (parabola, hyperbola, or ellipse). Then the intersections of the "opposite" sides, namely

$$
A B \cap D E, B C \cap E F, \text { and } C D \cap A F
$$

are collinear.

Part IV

The Synthetic Proof of Grinberg's Theorem

Lemma 1

Lemma (Grinberg)

Let $A B C$ be a triangle and D, E, F the traces of point P.
Let D_{0}, E_{0}, F_{0} be the midpoints of $B C, C A, A B$, and let M_{d}, M_{e}, M_{f} be the midpoints of $A D, B E, C F$. Then
$D_{0} M_{d}, E_{0} M_{e}, F_{0} M_{f}$ meet at the isotomcomplement $Q=K \circ \iota(P)$ of P.

Lemma 2 (The Key)

Key Lemma (Grinberg)

Let $A B C$ be a triangle and D, E, F the traces of point P. Let A_{0}, B_{0}, C_{0} be the midpoints of $E F, F D, D E$. Then $A A_{0}, B B_{0}, C C_{0}$ meet at the isotomcomplement $Q=K \circ \iota(P)$ of P.

We proved this lemma synthetically, using projective geometry to reduce it to the previous lemma.

Proof of the Theorem

- $\phi(P)=\iota \circ K^{-1} \circ \gamma \circ K \circ \iota(P)$ if and only if $(K \circ \iota)(\phi(P))=\gamma((K \circ \iota)(P))$
- Enough to prove that if $P_{2}=\phi\left(P_{1}\right)$ then the isotomcomplements of P_{1} and P_{2} are isogonal conjugates, which is not very hard.

Center of the Inconic

Theorem (Grinberg)

The isotomcomplement is also the center of the inconic, the unique conic that is tangent to the sides of $A B C$ at the points D, E, F !

Some of Our Results

Real Projective Plane $\mathbb{R P}^{2}$

- Embed \mathbb{R}^{2} in the real projective plane \mathbb{R}^{2} by adding a "line at infinity," I_{∞}
- "Points at ∞ " can be thought of as directions of lines. Two lines go through the same point at ∞ iff they are parallel.
- The line at infinity, I_{∞}, is the set of all points at ∞.
- Now any two lines intersect and any two points are joined by a line (self-dual).
- All projective geometry theorems work in this context.

Automorphisms of $\mathbb{R P}^{2}$

- An automorphism of $\mathbb{R P}^{2} \alpha$ (also called a projective collineation) is a map from $\mathbb{R} \mathbb{P}^{2}$ to $\mathbb{R} \mathbb{P}^{2}$ that takes points to points and lines to lines that preserves incidence
- If a point P lies on line I, then $\alpha(P)$ lies on $\alpha(I)$.
- Given any four points A, B, C, D (no 3 collinear) and any other four points $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ (no 3 collinear), there is a unique automorphism taking $A \mapsto A^{\prime}, B \mapsto B^{\prime}, C \mapsto C^{\prime}, D \mapsto D^{\prime}$.

Affine Maps

Definition

An automorphism of $\mathbb{R} \mathbb{P}^{2}$ is called an affine map if it takes I_{∞} to itself.

- Parallel lines go to parallel lines.
- An affine map is uniquely by determined by the images of three points A, B, C.
- An affine map preserves ratios along lines.

Affine Maps: Examples

- Example: rotations (rotate around a point)
- Example: translations (shift up/down/left/right/etc.)
- Example: dilatations (dilate everything from some center)
- Example: reflections (reflect about some line)
- Example: the complement map K
- NOT ι, γ, or ϕ.

An affine map is uniquely determined by the images of three points A, B, C.

Definition

If D, E, F are the traces of P, T_{P} is the unique affine map taking $A B C$ to $D E F$.

Our Notation

- $D E F$ is the cevian triangle of P with respect to $A B C$.
- $D^{\prime} E^{\prime} F^{\prime}$ is the cevian triangle of P^{\prime} with respect to $A B C$.
- $P^{\prime}=\iota(P)$.
- $Q^{\prime}=K(P)=$ isotomcomplement of P^{\prime}.
- $Q=K(\iota(P))=$ isotomcomplement of P.

Fixed Points

Theorem (Ehrmann, Morton, -)
If $\iota(P)$ is a finite point, then the isotomcomplement of P is the unique fixed point of T_{P}.

Theorem (Morton, -)
$\left(T_{P} \circ K\right)(P)=P$.

Theorem

$T_{P} \circ T_{P^{\prime}}$ is either a translation or a dilatation. Let $D^{\prime} E^{\prime} F^{\prime}$ be the cevian triangle of P^{\prime} and $A^{\prime}=T_{P}\left(D^{\prime}\right), B^{\prime}=T_{P}\left(E^{\prime}\right), C^{\prime}=T_{P}\left(F^{\prime}\right)$. Let $Q^{\prime}=K(P)$. Then $A A^{\prime}, B B^{\prime}, C C^{\prime}$, and $P Q^{\prime}$ are concurrent at the fixed point of $T_{P} \circ T_{P^{\prime}}$.

Let $P=G e$. Then:

- $Q=I$, the incenter.
- $P^{\prime}=N a$, the Nagel point.
- D, E, F are the points of contact of the incircle with the sides of $A B C$.
- $Q D \perp B C$
- $Q E \perp A C$
- $Q F \perp A B$

Generalizing

- P is the generalized Gergonne point.
- P^{\prime} is the generalized Nagel point.
- Q is the generalized incenter.
- What if we "generalize perpendicularity" by saying " $Q D \perp B C$," " $Q E \perp A C$ ", and " $Q F \perp A B$ "?

Generalized Orthocenter

- " $Q D \perp B C$," " $Q E \perp A C$ ", and " $Q F \perp A B$ ".
- The lines through A, B, C parallel to $Q D, Q E, Q F$, resp. are concurrent at the generalized orthocenter H.

Generalized Circumcenter

- " $Q D \perp B C$," " $Q E \perp A C$ ", and " $Q F \perp A B$ ".
- The lines through D_{0}, E_{0}, F_{0} parallel to $Q D, Q E, Q F$, resp. are concurrent at the generalized circumcenter O.

The Conic \mathcal{C}_{P}

Theorem (Morton, -)

The points $A, B, C, P, P^{\prime}=\iota(P), Q=K \circ \iota(P), Q^{\prime}=K(P), H$, and $H^{\prime}=H\left(P^{\prime}\right)$ all lie on one conic \mathcal{C}_{P}.

Three Conics

Theorem (Morton, -)

The natural generalizations of the incircle, circumcircle, and nine-point circle are conics that "point in the same direction."

Theorem (Morton, —)

The map $T_{P} K^{-1} T_{P^{\prime}}$ is a dilatation or a translation that takes the circumconic to the inconic.

Generalized Feuerbach Theorem

Theorem (Morton, -)

The generalization \mathcal{N} of the nine-point circle is tangent to the inconic at Z, the center of \mathcal{C}_{P}. The map $T_{P} K^{-1} T_{P^{\prime}} K^{-1}$ takes the \mathcal{N} to the inconic and fixes Z. There are also three exconics associated to P which are tangent to \mathcal{N}.

